

K25P 2019

Reg. No. :

Name :

II Semester M.Sc. Degree (CBSS – Supplementary) Examination, April 2025 (2021 and 2022 Admissions) MATHEMATICS

MAT 2C 09 : Foundations of Complex Analysis

Time: 3 Hours

Max. Marks: 80

Attempt any four questions from this Part. Each question carries 4 marks. (4×4=16)

- 1. Does the set D = $\{z \in C : 1 < |z| < 2\}$ is simply connected ? Justify your answer.
- 2. Given that $\gamma(t) = -1 + 4e^{6\pi i t}$, $0 \le t \le 1$. Find the index of γ with respect to the point 2.
- 3. Prove that the function $f(z) = z^4 e^{\frac{-3}{4z^2}}$ has an essential singularity at z = 0.
- 4. Prove that an entire function has a removable singularity at infinity if it is a constant.
- 5. Define the function $E_p(z)$ for p = 0, 1, ... Show that $E_p(z/a)$ has a simple zero at z = a.
- 6. Prove the following : If Re $z_n > 0$, then the product $\prod z_n$ converges absolutely if and only if the series $\sum(z_n - 1)$ converges absolutely.

Answer any four questions from this Part without omitting any Unit. Each question carries 16 marks. $(4 \times 16 = 64)$

Unit – I

- 7. a) Let G be a region and let f and g be analytic functions on G such that f(z)g(z) = 0 for all $z \in G$. Prove that either $f \equiv 0$ or $g \equiv 0$.
 - b) State and prove Morera's theorem.
 - c) Prove the following :

If $\gamma: [0, 1] \to C$ is a closed rectifiable curve and $a \notin \{\gamma\}$, then $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-a}$ is an integer.

K25P 2019

8. Prove the following :

Let G be a connected open set and let $f : G \to C$ be an analytic function. Then the following conditions are equivalent.

- a) $f \equiv 0;$
- b) there is a point a in G such that $f^n(a) = 0$ for each $n \ge 0$;
- c) $\{z \in G : f(z) = 0\}$ has a limit point in G.
- 9. a) State and prove Cauchy's integral formula (First Version).
 - b) Find all possible values of $\int_{\gamma} \frac{dz}{1+z^2}$ where γ is any closed curve in C not passing through $\pm i$.

Unit – II

- 10. a) State and prove Schwarz lemma.
 - b) Prove the following : If f has an isolated singularity at z = a, then the point z = a is a removable singularity if and only if $\lim_{z \to a} (z - a) f(z) = 0$.
- 11. a) State and prove the Rouche's theorem.
 - b) State and prove the Argument principle.
 - c) Show that $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} = \frac{\pi}{\sqrt{2}}.$
- 12. State and prove the Laurent Series Development.

Unit – III

- 13. State and prove Arzela-Ascolis theorem.
- 14. a) With the usual notations, prove that $C(G, \Omega)$ is a complete metric space.
 - b) State and prove Montel's theorem.
- 15. State and prove the Riemann Mapping Theorem.